

A Guide to Jutoh Plus

by Julian Smart

Published by Anthemion

Copyright Julian Smart 2020

Edition 1.13

All rights reserved. You are welcome to redistribute this book in its original form.

The author acknowledges the trademarked status and trademark owners of various products referenced
in this work.

This book was created using Jutoh.

The author acknowledges the trademarked status and trademark owners of various products referenced
in this work, which have been used without permission. The publication/use of these trademarks is not
authorized, associated with, or sponsored by the trademark owners.

Table of Contents

Preface...1
About this book...1
About the author...1
How this book is structured...1
Conventions and terms used in this book...1

Chapter 1: Introduction to Jutoh Plus...3
Scripting in Jutoh...3
Editing scripts...4
Running scripts using custom tools...4
What can scripting be used for?..4
HTML templates...5
Creating CHM and HTB HTML help files..6
Custom checking...6
Creating personalising books...7
Summary...7

Chapter 2: Script Syntax...8
General script syntax..8
Actions...9
Configurations...9
Important variables..10
Metadata..10
Cover image...11
Splitting the file...11
Import variables..11
Table of contents...11
Footnotes..12
Index, bibliography, and fields..12
Page layout..13
Setting properties..13
Searching and replacing...14
Inserting files...15
Inserting resource documents..16
Deleting sections..16
Style sheets...16
Templates...16
Summary...18

Chapter 3: Using the Command Line...19
Command line syntax...19
Using a virtual display..20
Using the command line on Mac OS X...20
Using the command line on Windows...20
Summary...20

Chapter 4: Using HTML Templates...21
Introduction to templates and assets...21

Combining document and project assets..22
Viewing and editing the substituted HTML...23
Using tags and configuration names...24
Using source code documents..24
Editing code editor preferences...26
Summary...27

Chapter 5: Creating HTML Help...28
Introduction to HTML help...28
Anatomy of an HTML help file...28
Importing from an existing HHP project...29
Creating an index (HHK) file..29
Specifying topic identifiers...29
File encodings..30
Summary...30

Chapter 6: Using Custom Checking...31
Introduction to custom checking...31
Editing find and replace preset libraries..32
Defining a preset...32
Viewing custom messages in the error window...33
Viewing custom messages in the Inspector...33
Applying presets to your project...34
Sample presets...34
Defining exceptions...34
Step-by-step guide...35
Summary...36

Chapter 7: Creating Personalised Books...37
What is personalisation and why would I need it?..37
What is a string table?..37
Personalisation steps...38
Using a special configuration for personalised books...40
Summary...40

Appendix A: A Sample Script...41

Change Log...43

Preface

About this book

This guide is a supplement to Master Digital Publishing With Jutoh 3 and the online help, and details
the extra features in Jutoh Plus. You will learn how to use the scripting facilities which will let you
automate ebook production and alteration of existing ebooks; and you will find out how to configure
HTML generation via templates for complex projects.

Jutoh Plus is a mode that you can unlock by buying either the full Jutoh Plus key, or a Jutoh Plus
Upgrade key which upgrades the licence from Jutoh to Jutoh Plus. If you already have the latest version
of Jutoh, whether downloaded as a trial or by purchasing standard Jutoh, you can unlock Jutoh Plus by
clicking on Help | Register Jutoh on the Jutoh menubar and entering your new Jutoh Plus key.

About the author

Dr Julian Smart is technical director of Edinburgh-based Anthemion Software. He is the founder of the
wxWidgets project, a popular construction kit for applications that run on a variety of computer
platforms. Julian is the creator of Jutoh, and, with his novelist wife Harriet Smart, the Writer’s Café
toolkit for writers, as well as the DialogBlocks and HelpBlocks tools for programmers.

How this book is structured

In Chapter 1: Introduction to Jutoh Plus, we describe the available features and how Jutoh helps to
automate ebook production.

In Chapter 2: Script Syntax, the details of scripting are covered.

In Chapter 3: Using the Command Line, the options available on the command line are described.

In Chapter 4: Using HTML Templates, we describe how each HTML document can be tailored,
allowing you to add further styles, JavaScript and custom HTML.

In Chapter 5: Creating HTML Help, we look at how Jutoh can be used to import and create Windows
or wxWidgets application help files.

In Chapter 6: Using Custom Checking, we explore a powerful proofing tool that can automatically
detect typos.

In Chapter 7: Creating Personalised Books, we look at a method of creating customised books in bulk
through the use of a data file and variables within a project.

Conventions and terms used in this book

• The convention Menu | Command, such as View | Preferences, indicates a menu and the
command on that menu.

• The notation Ctrl+S refers to holding down the control key while pressing the ‘S’ key. On Mac,
you can interpret this as Command+S.

1

http://www.wxwidgets.org/
http://www.helpblocks.com/
http://www.dialogblocks.com/
http://www.writerscafe.co.uk/

• Where we refer to right-clicking, if you’re on a Mac, this action will be peformed by control-
clicking since there’s only one mouse button.

• The terms compiling, building and generating an ebook all refer to the same act of creating an
ebook from the information in your project.

• A context menu is the menu you get when right-clicking (or control-clicking on a Mac), or
pressing the context menu button on a Windows keyboard.

• Document is a general term for each separate item that can appear in a Jutoh project outline,
whether it’s a chapter of your book, an embedded font, an audio file, or any other supported
document type.

• Book section refers to a specific kind of document in which you can edit text and graphics; it can
contain a chapter, a title page, a table of contents or any individual part of a book. This may
sometimes be abbreviated to section.

• A dialog is a window that opens in response to some command or condition; usually (but not
always) it needs to be dismissed before you can continue working in the main window. Dialogs
usually have a Help button that will give more detailed information than this guide can cover.

• Screenshots are taken on Windows, but the functionality is identical on Linux and Mac even if it
looks slightly different.

2

Chapter 1: Introduction to Jutoh Plus

Scripting and HTML templates are the two main features of Jutoh Plus. Jutoh Plus also supports the
creation of CHM and HTB help files, custom checking, and creating personalised books. In this chapter
we explore the concepts behind these features, and how you might make use of them.

Scripting in Jutoh

Scripting is the main feature of Jutoh Plus. A script is a file with the jutohscript extension, and you can
run a script from the command line or by opening a script using File | Open. If you open a script from
Jutoh, you will see the Script Runner window:

The script runner window

Click on Start to run the script. A progress gauge will be shown below the log window, and
information, warnings and errors will be written to the log window. Errors will be shown in red. Click
on Edit to edit the script. You can choose a new script file with the “...” button, and you can save, clear
or copy the current log text. If you check Abort on error, the script will terminate immediately an
error is encountered; otherwise it will carry on with processing as far as it can.

3

When running Jutoh from the command line using the --batch and --quiet switches and supplying a
Jutoh script file, Jutoh will complete the script processing without any prompting or visible user
interface, so you can use it as a step in other shell or DOS command scripts, or indeed from any other
application. You can view or parse the log file to determine if the script was successful.

Here is an example of command line operation:

jutoh --append=log.txt --batch --quiet MyScript.jutohscript

Please note that if running a script by clicking it within Finder on a Mac, Jutoh may hang during script
execution, so it’s best to run it by opening the script from File | Open in Jutoh.

Editing scripts

Jutoh doesn’t provide an editor for scripts, since they are simple text files (preferably encoded in UTF-
8, without a BOM marker) that you can use with almost any text editor. For example, on Windows, you
can use Windows Notepad, or a third-party application such as Programmer’s Notepad 2. If you are
using the script runner window, you can click on Edit to edit the current script using whatever
application is associated with the txt extension. On Windows, that’s usually Windows Notepad unless
you install a different editor.

Running scripts using custom tools

The Tools menu, on the menubar at the top of the application window, lists built-in tools (such as a
‘Dictionary’ web link) and also any custom ones that you add via the Preferences/Tools pane. The tools
can also be shown on the Jutoh Desktop. Normally custom tools are documents, web links or
executable files, but you can also specify Jutoh script files. When a script is executed from a tool, there
is no script window, and messages, warnings and errors appear on the Jutoh log window.

You may find custom script tools useful for accomplishing certain tasks that would be laborious to do
via the regular user interface, even though you use Jutoh interactively most of the time. For example,
you can use it to perform reimport and subsequent property setting and compilation for the current
project.

What can scripting be used for?

A Jutoh script can create a Jutoh project file from input such as a DOCX or ODT file; it can specify
most of the options that you can change by hand, such as how to split the file into sections, and it can
check and create ebook files. You can import styles common to your projects, replace strings, and
insert content fragments (such as a copyright notice that is the same in all your projects). You can
change the way different configurations behave, for example specifying different cover designs for
different formats.

These capabilities are especially useful when you are dealing with many ebooks. One scenario is
coordinating incoming content that is formatted in DOCX or ODT to your specifications. You can
outsource the editing to people who just use a regular word processor and who don’t have to know how
Jutoh works. You can then use scripts to convert the files you receive into Jutoh projects and various
ebook formats, adding standard copyright notices, extra content, and covers; all without a lot of manual
operations.

Another use would be to stamp a book with the customer’s name to discourage redistribution or to

4

make it more personal. This could be done on a web server, if necessary using a virtual X server such
as Xvfb since Jutoh still needs a notional display to be present: see Chapter 3 for more on this.

In summary, these are the main operations you can perform in a Jutoh script:

• import from DOCX, ODT, HTML, Epub or text;

• run a reimport and compile, for the current project, without going through all the New Project
Wizard steps;

• open an existing Jutoh project for modification;

• specify how the input will be split into sections;

• generate ebooks;

• check the Epub after generation;

• create multiple configurations, including more than one for the same basic format;

• change section titles;

• specify a cover or a different cover per configuration;

• insert DOCX and ODT fragments into sections, putting the fragment at the start or end of a
section or using a keyword to position it;

• insert images in specific sections or using keywords;

• replace text or paragraph styles based on a search for text or paragraph style;

• merge an external style sheet with the default style sheet;

• set string table values, for one configuration per command or all configurations at once.

Note that you can’t influence the ordering of different types of commands; they are done in this order:

 1. file import;

 2. file insertions;

 3. document, configuration, string table and image property settings;

 4. text and style replacements;

 5. book compilation and checking.

HTML templates

Normally, Jutoh generates the HTML code for each book section. You can already customize HTML a
little by marking content with the “HTML” paragraph style, and adding custom CSS though Jutoh style
sheets and per document. HTML templates allow you to go a step further and replace parts or all of
each HTML file with custom code edited within Jutoh.

Jutoh introduces the concept of ‘assets’, which are simply fragments of text to be inserted into each
document file according to block markers in a special asset, the template. An asset could be JavaScript
code, or custom CSS, or HTML content to insert into the body of the file. Each document can have an
arbitrary number of named assets, including the template itself, and by inserting block markers in the

5

template, you can instruct Jutoh to insert other assets into the template. The project itself also has a set
of assets that can be used to create each HTML file, which means you can make document-specific
assets override the project assets. Or you can use only project assets.

Jutoh’s ‘asset editor’ is used to add, delete and edit templates and other fragments for documents and
for projects. To edit a document’s assets, you can use View | Asset Editor to switch from the normal
editor view to the asset view, and back. The configurable syntax highlighting editor is a convenient
way to edit code without recourse to an external editor.

In addition to assets, further code can be supplied using source code documents that you can add to
your project and edit using the built-in code editor. They will be placed under the Resources folder in
the project outline, and will be included in the ebook for you to refer to from document or project
assets. For example, you could include JavaScript files that will be referenced from script tags in
HTML documents. For a given source code document, you can specify which configurations the code
will apply to, since you may wish to have the ability to generate different variants of your ebook with
varying levels of complexity.

Currently, assets cannot be specified in scripts, but you can specify a Jutoh project template which may
have customised project assets.

See Chapter 4: Using HTML Templates for more details.

Creating CHM and HTB HTML help files

Jutoh Plus can create HTML Help files used by Windows and wxWidgets applications. Windows
HTML Help files have the extension CHM, and wxWidgets HTML Help files have the extension HTB.
HTB files contain simplified HTML with no CSS, but the two formats otherwise have similar project,
contents and keywords files. For more on this, please see Chapter 5: Creating HTML Help.

Custom checking

Jutoh Plus can be configured to emit additional messages during compilation or in the Inspector,
tailored to the user’s needs. Normally find and replace presets are used within the Find and Replace
dialog, for quick access to frequently-used find commands. But they can also be used to find issues in a
project whenever you compile it; examples include:

• highlighting any paragraphs formatted with the ‘Normal’ paragraph style rather than a more
specific style;

• highlighting any blank paragraphs;

• checking for words that are frequently accidentally repeated, such as “his his”, “to to”, “at at”,
and so on;

• checking for known typos of character names;

• checking for clichés or over-used words that would not show up in a spell-check;

• checking for references to book distributors that are not supposed to be mentioned in the final
ebook.

This facility can use preset libraries stored in the project itself, or in the global store, or a combination
of both. For more information, please see the chapter Using Custom Checking. You can also search for

6

“custom checking” in the Jutoh application help.

Creating personalising books

This feature allows bulk creation of customised books using a data file of information, via the Book |
Batch Compile command. A typical use for this is when you are sending out advance copies and wish
to discourage readers from distributing the book: you can add the customer’s name and other details to
the title page, for example.

This works by assigning values from the data file to strings (variables) in a string table, and then
replacing any variable names in the Jutoh project with the values from the string table, for example
%CUSTOMER%. One book per record (line) in the data file is created. This is accomplished without
scripting, and is very easy to use.

For more information on how to use this feature, please see the chapter Creating Personalised Books.
You can also search for “creating personalised books” in the Jutoh application help.

Summary

We’ve seen how to edit and run a script, and what scripts can be used for. We’ve also introduced the
concepts of HTML templates, assets and source code documents, and touched briefly on the other
features of Jutoh Plus. Next we’ll delve into the details of script syntax.

7

Chapter 2: Script Syntax

In this chapter we’ll describe the anatomy of a Jutoh script in detail.

General script syntax

A Jutoh script has extension jutohscript and is composed of groups of variable/value pairs, in this form:

[Group Name]
Variable1=Value2
Variable2=Value2

The group names are arbitrary and not used by Jutoh except to report errors, but they must be unique.
You can use multiple groups to process multiple files.

Jutoh scripting is not a procedural programming language and everything is specified using
variable/value pairs. The value part may have a special syntax depending on the type of variable, for
example comprising semicolon-separated named parameters – see the insertfile and search examples
below. Variables can refer to project-wide or configuration-wide settings. Here’s a configuration-
specific setting:

configs.Epub.HTML left margin=10

And a project-wide setting:

title=Lena

You can add a comment on its own line using a semicolon.

By default, Jutoh assumes that the script is encoded in UTF-8. If you want to change this, you can set
the encoding in a comment at the top of the file, for example:

;;; encoding=windows-1252

Note that all backslashes, for example in file paths, must be escaped with an extra backslash.
Alternatively, you can use forward slashes in paths on all operating systems.

If you wish to include a double quotation mark within a string, you can escape it with a single
preceding backslash within a simple right-hand value (a string with or without quotation marks).
However if the value is within a parameter, you must use two backslashes to escape the quotation
mark. For example:

documents.Chapter 1.name="Chapter \"One\""

and:

insertfile=file:"none";new-section:"Chapter \\"One\\""

8

If you need to include an “=” character in the variable part of a command, you can escape it with a
backslash to stop it being interpreted as the separator between variable and value.

Actions

You must specify the ‘actions’, a comma-separated list of keywords. For example:

actions=import,setproperties,compile,check

open
Opens the specified project.

import
Creates the specified project from the named source file, deleting the project first if it already
exists.

reimport
Creates the specified project from the named source file, or if it exists, reimports into the
existing project. Use project=this to specify the current project, and leave source blank to use
the import file already existing in the project.

openorimport
Opens the project if it already exists, and creates it if it doesn't exist.

compile
Compiles the project after opening or creation.

check
Checks the ebook (Epub only).

setproperties
Sets the configuration and other properties if the main action is open, import or openorimport.

close
Closes the project after other actions have been completed.

compact
Compacts the project after other actions have been completed and before closing.

Configurations

You must include the names of the configurations you're interested in, using the configs variable, which
should be of the form:

configs=<Configuration Name 1>:<format 1>,<Configuration Name 2>:<format
2>, ...

Formats are represented by the normal extension: mobi, epub, odt, html, txt, htb, and mp3.

For example:

configs=Epub:epub,Mobipocket:mobi

9

Important variables

source
For example: source=Lena.odt. This indicates the file to import, and can be ODT, DOCX,
text, HTML or Epub. You can leave this blank if you are reimporting and the project contains an
import file name (that is, you imported a file at least once before).

project
For example: project=%TITLE%_%AUTHOR%. This indicates the name of the project and can
contain metadata keywords. You can also specify the value ‘this’, to indicate the currently
loaded and selected project.

template
The template file to base the new project on. For example: template=MyTemplate.jutoh. For
more information on templates, see below.

deleteexistingproject
Specify yes to delete an existing project if it exists, to avoid a prompt.

abortonerror
Specify no to continue processing other configurations if an error occurs.

titlepage
Specify simple to generate a title page from the metadata, or none. Valid on import only, and
sets the value of the Generate title page property for all configurations. You can also set the
property with the syntax configs.*.Generate title page=yes.

Metadata

You can specify these properties for metadata, for either import or open actions:

author, title, copyright, date, description, ISBN, EAN, language, contributors, subject, publisher,
website, metadata_source, metadata_identifier

(the case is significant). These can either be in the form:

ISBN=12345678

or:

ISBN:Epub=12345678

to specify either a configuration-independent or configuration-dependent value. If configuration-
independent, the value will be inserted directly into the metadata. Otherwise, a keyword will be set in
the metadata, and a configuration-specific string table value used which is substituted for the keyword
when the ebook is generated.

metadata_identifier is an alternative to using ISBN or EAN and cannot be used in a configuration-
specific form. The syntax of this property is:

metadata_identifier=value:"1234567";scheme:"URL"

10

Cover image

You can specify the cover image or .dtempl cover design template file, on import only.

cover
Specify the cover image, with or without the configuration, for example cover=Lena.jpg or
cover:Epub=Lena.jpg and cover:Mobipocket=Trees.dtempl

Splitting the file

You can specify the method, pattern and style used for splitting the file into sections.

splitmethod
Can be one of pattern, style, pagebreak.

splitpattern
For example, Chapter*. The value can include wildcards and pipe (‘|’) separators for multiple
patterns.

splitstyle
For example, Heading 1. The value can contain wildcards.

Import variables

These variables control aspects of import for HTML/Epub import only.

import.parsecss
yes to parse CSS when importing HTML or Epub, no to use simple styles.

import.firstparagraphstyle
The style for first paragraphs after a title if import.parsecss is no.

import.subsequentparagraphstyle
The style for subsequent paragraphs if import.parsecss is no.

Table of contents

These variables determine how the table of contents will be created. removefromtoc is one of the few
variables that does not have a direct equivalent in the GUI. The equivalent is a sequence of manual
actions to remove items from the compiled table of contents.

toc
Can be simple, fromheadings or none.

tocmaxlevel
A maximum level to search, for example 3.

removefromtoc
A pipe (‘|’) separated list of section names to ignore.

toctitle
The table of contents title, default Table of Contents.

toctitlestyle

11

The style for the ToC title, default TOC Heading.

tocmatchstyleN
The style match at level N (between 1 and 6).

tocstyleN
The table of contents entry style to apply at level N (between 1 and 6).

Footnotes

These variables determine how footnotes will be formatted.

footnotes.autobuild
If using endnotes, this automatically rebuilds the endnotes when compiling if the value is yes.

footnotes.endnotes
If yes, an endnotes section will be created.

footnotes.alwaysapplyfootnotestyle
If yes, the designated footnote style will always be applied.

footnotes.epubtypemarkup
If yes, Epub 3 types will be applied to the endnotes page.

footnotes.asidemarkup
If yes, Epub 3 asides will be used for endnotes.

footnotes.title
The title for the endnotes section.

footnotes.titlestyle
The paragraph style for the endnotes title.

footnotes.notestyle
The paragraph style for each endnote.

footnotes.citationstyle
The character style for each footnote/endnote citation.

footnotes.numberingstyle
Either global or chapter.

footnotes.citationappearance
One of superscript, squarebrackets, none, or a custom string containing the keyword %REF%.

footnotes.referenceappearance
One of superscript, squarebrackets, none, or a custom string containing the keyword %REF%.

Index, bibliography, and fields

These variables control settings for the alphabetical index, bibliography, and fields (including
automatic heading numbering).

index.autobuild
If yes, builds an alphabetical index section when compiling.

12

bibliography.autobuild
If yes, builds a bibliography section when compiling.

fields.autobuild
If yes, updates fields and numbered headings when compiling.

fields.autonumbering
If yes, enables automatic heading numbering based on outline settings.

Page layout

These variables control settings for page layout. For more information, please search for page layout in
the Jutoh help.

pagelayout.mode
Determines whether Jutoh makes simple page style decisions, or leaves it up to page styles. Can
be one of basic (use configuration settings for page layout), manual (use page styles assigned to
each section), and auto (use specified simple header and footer settings).

pagelayout.startnumbering
If auto, Jutoh will choose where to start numbering. Otherwise, the value is a section title used
to determine when to start numbering.

pagelayout.header, pagelayout.footer
Each of these can be one of none, page-number, book-title, and book-chapter.

Setting properties

You can set arbitrary image, configuration and string table values using this syntax:

<context>.<object name>.<property name>=<property value>

or

<configuration or table name>.<property name>=<property value>

where <context> is one of configs, strings, globalstrings and objects. Currently objects is used to
specify image properties, but may be extended to other content objects in the future.

For example:

configs.*.Maximum image width=999
configs.Epub.HTML left margin=10
objects.butterfly.maxwidth=100%
strings.*.TESTSTRING=Hello, this is a test string!

or just:

Epub.HTML left margin=10

You can use an asterisk for the configuration or table name, to denote all configurations or tables.

Use strings to specify project string tables, and globalstrings to specify global string tables. If a table is
referenced but not found, it will be created.

13

You can set document properties with the syntax:

documents.<document title>.<property name>=<property value>

For example:

documents.Chapter 1.guide=start

Valid document properties are name (the title of the document), tags, guide, filename, showintoc,
showinnavmap, showinspine, scripted, uses-svg, uses-mathml, uses-remote-resources, javascript,
javascript-filename, javascript-at-bottom, css, css-filename, notes, epub-type, page-style-enabled,
page-style-name, page-style-start-number, page-style-repeat.

Valid image (object) properties are leftpadding, rightpadding, toppadding, bottompadding, alt, width,
height, maxwidth, maxheight, preserveoriginalformat, svg, alignment, name, id, url, pagelink. Values
of these properties are as specified in the image properties dialog, apart from the pagelink property who
syntax is:

objects.butterfly.pagelink=Section Title#bookmarkname

In image assignments such as the above, the image id can be used instead of the image name to identify
individual instances of an image that might share the same name.

Unlike other types of property, object properties can also use parameter syntax. Using this, we can
speed up object property setting by specifying a section document as follows:

objects.butterfly.width=document:Section Title;value:600

Note that all property setting specified in a script will be done in one lump, after other operations have
taken place; you cannot interleave file import and property setting.

Searching and replacing

Specify a search operation with search. Search operations take parameters in the value part, of the
form:

name1:"Value1";name2:"Value2";...

Valid search operations are: find-text, match-text (as find-text but with wildcards), and find-paragraph-
style. Specify the title of a document (with optional wildcards) as the value of in-section to limit the
replacement to one or more sections.

Valid replacement operations are replace-text and replace-paragraph-style.

replace-text cannot be used with match-text since pattern matching doesn’t specify a unique match
string. If you specify a value of $EMPTY$ for replace-text, the empty string will be used.

Examples:

search=match-text:"** * **";replace-paragraph-style:"Centre"
search=find-text:"In my job";replace-text:"In my incredibly interesting
job";in-section:"Chapter One"
search=find-paragraph-style:"Normal";replace-paragraph-style:"Body Text"

14

The first example searches for two space-separated asterisks; they are escaped because normally an
asterisk is a wildcard character matching zero or more characters. The escape character is a double-
backslash because the backslash character is also a special character in script syntax, and has to be
escaped itself.

Inserting files

You can use the insertfile operation to insert files into existing sections or as new sections. DOCX,
ODT, HTML, text, bitmap image and media files may currently be specified. If inserting text, the file
should be in the encoding specified for the project, which defaults to UTF-8, or you can use the
encoding parameter.

Creating a new document section with new-section
The value of the new-section parameter is the new section title. Also specify the document
position with after-section or before-section, and/or parent-section, or omit these to append to
the end of the book. Specify the file name with file. You cannot use new-section for image
insertion.

after-section and before-section can take the values “first-section” and “last-section” as well as
section titles.

You can specify the new document’s guide type (such as “toc”) with the guide-type parameter.

Inserting content into an existing section with in-section
For the in-section parameter, specify the name of the section to insert into (or ‘*’ for all
documents). Specify the new content file name with file. Also specify one of at-start (“yes”), at-
end (“yes”), or a keyword to replace. The paragraph containing the keyword will be deleted. To
insert before or after the paragraph containing certain text without deleting the existing text,
specify before-text or after-text. This text is case-sensitive, matches anywhere in the paragraph
and doesn’t take wildcards.

You can specify a paragraph style to apply to all paragraphs in the newly-inserted content using
the style parameter. For text files, you can specify the encoding to use with the encoding
parameter; otherwise the project encoding will be used, defaulting to UTF-8.

If you specify clear:yes, the section will be cleared before content insertion. This also applies to
inserting images and media objects.

Inserting images into an existing section with in-section
The parameters are as above, but also specify name to identify a new image, id to set the image
identifier, and class to set the CSS class. You can also use width, height, max-width, max-
height, padding, left-padding, top-padding, right-padding, bottom-padding (include units with
dimensions), and alt (for alternate text). Specify an optional alignment with the value “none”,
“left” or “right”.

Inserting media objects into an existing section with in-section
The parameters are as above, but you must specify media-kind as “video”, “audio”, or “image.”
The file parameter is the media file, which will be added to the project’s Resources section if it
has not already been added, and you can specify an image poster file with the poster parameter.
Pass the value “yes” to show-controls if you wish media controls to be shown.

Examples:

15

insertfile=file:"TextChunk.odt";new-section:"My New Section";after-
section:"Lena"
insertfile=file:"TextChunk.odt";in-section:"Lena";at-end:"yes"
insertfile=file:"TextChunk.docx";new-section:"My New Section";parent-
section:"Lena"
insertfile=file:"TextChunk.odt";in-section:"Lena";at-start:"yes"
insertfile=file:"TextChunk.odt";in-section:"*";keyword:"%MYTEXT%"
insertfile=file:"butterfly.png";in-section:"*";keyword:"%MYIMAGE
%";name:"butterfly";id:"imageid1";class:"animals"
insertfile=media-kind:video;poster:poster.png;alignment:none;width:"90%";max-
width:"100%";padding:"1cm";right-padding:"1cm";alt:"Fox video";title:"A
fox";show-controls:yes;file:"fox.m4v";in-section:"Chapter 3";at-end:"yes"
insertfile=file:"TextChunk.odt";in-section:"*";before-text:"In my"

Inserting resource documents

The insertresource command lets you insert arbitrary resources into the project. Use the parameters
file, mimetype and resource-location. For example:

insertresource=file:"MyAudio.mp4";mimetype:"audio/mp4";location:"resources/
MyAudio.mp4"

Deleting sections

You can use the deletesection operation to delete one or more sections. Use title:"PATTERN" to
specify the title of the sections to delete. If the pattern contains an asterisk, the pattern is assumed to
contain wildcards, otherwise an exact title match is performed.

Style sheets

You can specify a Jutoh style sheet file to import or merge on project creation. If you specify
importstylesheet, the style sheets will be added to the existing style sheets and any name clash will
result in the new sheets overriding the old sheets.

If you specify mergestylesheet, only the first sheet in the file will be used and it will be merged with the
default style sheet, with any new styles overriding existing ones. You can use this to incorporate
custom styles, which you might then use by doing a style search and replace operation.

Examples:

importstylesheet=MyStyles.stylesheet
mergestylesheet=MyStyles.stylesheet

Style sheets can be used when importing, or applied when opening an existing project file.

Templates

You can specify a Jutoh project to use as a template using the template variable, which will be applied
before import, or after opening an existing project. You can control whether parts of the template will
be merged with imported data, discarded, or kept. These specifiers follow the pattern of
template:<element>=<value> where <value> is one of keep (retain this template information and
ignore imported/specified information), discard (ignore this template information) and merge (merge
this template information with specified or imported information, with priority given to the latter).

16

Currently, merge only works for metadata, and otherwise is simply a synonym for keep.

Specify a template file like this:

template=MyTemplate.jutoh

These specifiers are supported (the defaults are asterisked):

• template:accessibility – accessibility options, as set via Project Properties/Accessibility. One of
keep*, discard

• template:bibinfo – the bibliography options, as set via Project Properties/Indexes/Bibliography.
One of keep*, discard

• template:bullets – the ODT bullet information, as set via Project Properties/Options/ODT
Options. One of keep*, discard

• template:configurations – the configurations. One of keep*, discard

• template:content – contents of the "Content" folder. One of keep*, discard

• template:covers – the cover design(s). One of keep*, discard

• template:fixedlayout – the fixed layout project options, as set via Project Properties/Fixed
Layout. One of keep*, discard

• template:footnotes – the footnote options. One of keep*, discard

• template:htmlhelp – the HTML Help options, as set via Project Properties/HTML Help. One of
keep*, discard

• template:index – the index options. One of keep*, discard

• template:metadata – the metadata such as title, author. One of keep, discard, merge*

• template:linkstyles – link styles as edited via Project Properties/Styles/Link Styles One of
keep*, discard

• template:options – miscellaneous options such as titlepage; for internal Jutoh use only. One of
keep*, discard

• template:outlinestyles – outline styles as edited via Project Properties/Fields & Numbering.
One of keep*, discard

• template:pagelayout – page layout options as edited via Project Properties/Page Layout. One
of keep*, discard

• template:pagestyles – page styles as edited via Project Properties/Page Layout/Manage Page
Styles. One of keep*, discard

• template:projectoptions – various project options as edited via Project Properties/Options. One
of keep*, discard

• template:regions – fixed layout magnification region settings, as edited via Project
Properties/Fixed Layout. One of keep*, discard

• template:resources – contents of the "Resources" folder. One of keep*, discard

17

• template:sequencedefinitions – sequence definitions as edited via Project Properties/Fields &
Numbering/Edit Sequence Definitions. One of keep*, discard

• template:shortcuts – the custom project shortcuts (associated with styles). One of keep*,
discard

• template:stringtables – the string tables. One of keep*, discard

• template:styles – the style sheets. One of keep, discard

• template:toc – the table of contents options. One of keep*, discard

Summary

You have learned how to create a script for creating and altering ebooks. For an example, please see
Appendix A: A sample script. Next we will look at how to control scripting from the command line.

18

Chapter 3: Using the Command Line

This chapter describes how to use the command line to drive Jutoh’s scripting facility.

Command line syntax

When running Jutoh from the command line, you can specify a Jutoh project file name (.jutoh) or a
Jutoh script file name (.jutohscript).

You can specify switches in a long or a short form. The long form uses two dashes, and the short form
uses a single dash or a forward slash. Where a parameter is specified, it is separated from the switch by
equals (‘=’).

These are the switches you can use:

--output=filename (-o=filename)
Writes log information and errors to the specified file.

--append=filename (-a=filename)
Appends log information and errors to the specified file.

--info (-i)
Writes verbose informational output, only when writing to a log file.

--batch (-b)
Reduces GUI prompting to a minimum, and exits after processing. Some GUI will still be
shown.

--quiet (-q)
Shows no GUI in batch mode.

--help (-h)
Shows help on command line switches.

--version (-v)
Shows the Jutoh version number.

--local-settings (-l)
Specifies that the application settings should be stored in a data file next to the Jutoh executable.

--display=hostname:displaynumber.screennumber
This is available on Linux and other X11-based operating systems only. The value is
normally :0.0. This overrides the value of the DISPLAY environment variable. You can use this
argument to redirect display output, for example to a virtual display such as Xvfb.

When executing a Jutoh script, you are likely to specify --batch, and one of --output or --append to
save the log to a file. The --batch switch will cause Jutoh to execute the script and return after
processing. Specify --quiet to ensure that the processing is not interrupted by dialogs.

For example:

19

jutoh --append=log.txt --batch --quiet MyScript.jutohscript

Using a virtual display

On X11-based systems, you can use Xvfb to run Jutoh without the need for a physical display. Use the
xvfb-run command to simplify the use of Xvfb and Jutoh. For example:

xvfb-run jutoh --batch myscript.jutohscript

This runs the virtual display, then runs Jutoh using this display (by setting the DISPLAY environment
variable). When Jutoh terminates, so does Xvfb.

Using the command line on Mac OS X

On Mac OS X, you can use the ‘open’ command to run Jutoh with command line arguments, passing -
W to wait until processing has terminated. For example:

open -W Jutoh.app --args myscript.jutohscript --batch --quiet

Please note that if running a script by clicking it within Finder, Jutoh may hang during script execution,
so it’s best to run it by opening the script from File | Open in Jutoh.

Using the command line on Windows

In a Windows command window, you can use start /WAIT to return control to the script only when
processing has terminated. For example:

start /WAIT jutoh.exe myscript.jutohscript --batch --quiet

Summary

This chapter has covered the details of running Jutoh on the command line. Next, we look in detail at
the use HTML templates for adding code and custom HTML.

20

Chapter 4: Using HTML Templates

This chapter describes how to use Jutoh Plus templates to customise your HTML-based ebooks. You
can use this to add further styling, JavaScript code, and entire custom HTML sections.

Note that if your needs are relatively simply, you may be able to get away with adding custom CSS and
JavaScript code via the document properties dialog. HTML identifiers and other HTML attributes are
made available in a document, and a range of HTML tag objects can be inserted, reducing the need to
replace a whole section with HTML.

Introduction to templates and assets

By default, no templates are used to generate HTML – Jutoh will use a standard HTML file layout and
code generated from style and content in each document. If you switch on project-wide templates via
the Assets page in Project Properties, Jutoh will now use the default template called ‘HTML Template’
and insert generated code into special blocks marked with keywords within the template. These are the
keyword names of the standard blocks that Jutoh will use:

BODY
Substitutes the content generated from the text and graphics in the current document.

PROLOG
Substitutes the first couple of lines from an XHTML file, containing the ?xml tag and !
DOCTYPE directive.

HTML_OPEN
Substitutes the opening head tag.

HEAD
Substitutes the contents of the HTML head portion.

By default, there is a single asset called ‘HTML Template’ that has the TEMPLATE keyword to
indicate that it is a template rather than any other kind of asset. Other assets you can add are CSS,
JavaScript, and HTML fragments. As far as the template system is concerned, they are just text
portions that are placed in the relevant block. If you define new assets with new keywords, you will
also want to add the relevant block to your template. So if you add an asset called ‘Fancy JavaScript’
with the keyword FANCYJAVASCRIPT, then the relevant portion of your template might look like
this:

<head>
<script>
!{{{ FANCYJAVASCRIPT
!}}} FANCYJAVASCRIPT
</script>
!{{{ HEAD
!}}} HEAD
</head>

21

A quick way to add a block is to right-click over the editor and select Insert Block; if there any non-
template fragments defined for the current document, you will get a choice of blocks to add and Jutoh
will insert the appropriate markers at the current position.

Note that although we’ve edited the template, we’ll still get the usual head code generated by Jutoh
since we left the HEAD block in. If you want to replace the standard code, delete the block and add
your own code.

Block markers, !{{{ to start the block and !}}} to end the block, are stripped out before the final HTML
is written to the ebook file. Block markers must not have any space before them, and the block
keyword must be preceded by just one space.

You can disable assets by clearing the Use this asset checkbox in the asset editor. A disabled asset will
not take place in any substitutions.

Asset names are not used during code generation by Jutoh, but they must be unique within the project
or document. You can have several assets with different names but the same keyword; we will see
shortly how we can choose between assets.

Combining document and project assets

It’s convenient to specify a template for the whole project, but what if you want to customise each
document, or maybe just one or two of them? Each document in your book has its own template and
assets, initially disabled. You can edit them by toggling the asset editor for each document, with View |
Asset Editor (Ctrl+Alt+W). Use the command again to get back to the regular editor view. This is not
shown as a tab to cut down on user interface clutter; instead, you can get back to the regular editor view
by pressing the Return to Normal View button or via the Asset Editor command.

22

The asset editor for a book section

Now we potentially have clashing templates and assets, since we can have project and document assets
active simultaneously. Jutoh resolves this by searching through enabled document assets first, then
project assets. If it has used an asset from the document, it won’t use the same-named asset from the
project.

You can use this in various ways to differentiate one document from another. For example, say you
want to add an animated logo using JavaScript to the top of several, but not all, documents. However,
you don’t want to copy and paste the whole template between documents – you want to use the same
project template for all documents.

To do this, add a LOGO block to your project template just before the BODY block. Then, for a
document that needs a logo, enable assets for the document, disable the document template, and add a
LOGO asset containing the JavaScript. If the LOGO asset is found in a document, it will be inserted
into the template, otherwise it will be omitted.

A variation of this is to keep the LOGO JavaScript asset in your project, only, and change the template
of the individual document, adding the LOGO block markers.

Viewing and editing the substituted HTML

When a document template is being used, Jutoh will do the substitutions and then save the result
(before block marker removal) for later editing. This lets you see the whole HTML file, and gives you

23

the opportunity to ‘freeze’ parts of the HTML by removing the block markers, so Jutoh no longer
replaces these parts.

If the document-specific template is not being used, perhaps because you disabled it or it didn’t match
the given criteria so the project template was used instead, then Jutoh will not store the template after
substitution of fragments. This is because the template is no longer document-specific, and therefore
cannot be stored per-document. It’s worth bearing this in mind if you’re surprised to see no changes in
a document template.

Disabled fragments or fragments that do not match the criteria for the current document and
configuration will have the contents of their blocks removed. However, if you delete or change the
keyword for a particular block so that the keyword is no longer known to Jutoh, you will need to
manually delete that block in your templates.

Note that if you edit within block markers, these edits will be lost the next time Jutoh generates an
HTML-based ebook (using Epub, Mobipocket, or HTML configurations).

Using tags and configuration names

If you specify comma-delimited tags for an asset, they will be used to choose between alternative
assets, depending on the tags that have been defined in the current document using the Document
Properties dialog. If no tags are specified for the asset, this is considered to be a match (the asset will be
used). If one or more of the tags match tags in the curent document, this is a match. If one or more tags
are specified for the asset, but none match tags in the current document, then this is not a match and
assets is not used.

This provides an even simpler way to implement our logo example – have the logo fragment in project
assets, and simply specify tags for the chapters to which it should apply. We don’t even need to edit
any document assets; just edit document properties and provide tags.

Similarly, you can specify one or more configuration per asset (again comma-delimited), and this way
you can have different templates or fragments depending on the current configuration. For example,
you might have an ‘iBooks Epub’ configuration that uses JavaScript, and a ‘Generic Epub’
configuration that doesn’t.

Using source code documents

In Jutoh Plus, you can add Source Code documents under the Resources folder in your project. These
documents can contain HTML, XML, JavaScript, or CSS, and the code editor will reflect the language
choice with appropriate colouring. The data you paste, type or import into these documents are stored
within the project file as usual, but will be written to the ebook file under the OPS folder. You can
specify relative paths if you want them to be stored in a separate folder under OPS.

Here’s an example of a source code document, showing CSS data:

24

A source code document

Now you can refer to the file in your document or project assets, so you don’t have to paste the
contents of the file verbatim into your template or other fragments.

Keyboard and mouse editing operations are as you would expect for a source editor, and the Find and
Replace commands on the Edit menu work in source code documents (but only one document at a
time).

The properties dialog for source code documents lets you specify the encoding the file should be
written with, whether the file should be included at all, and the configurations that the source code is
relevant to (a comma-separated list of configuration names). If the configuration list is left blank, the
file will be written for all HTML-based configurations, except if Use this resource is cleared.

25

The source code document properties dialog

Editing code editor preferences

Various aspects of the code editor appearance and behaviour, such as syntax colouring and auto-
indentation, can be changed per code language in the Code Editor page of the Preferences dialog.

The code editor preferences

26

Styles are defined for particular aspects of code syntax. When you click on the Styles tab in the code
editor preferences, you will see all the styles relating to that language. However, note that some styles,
such as ‘Comment’ and ‘Default’, are shared between languages.

In the Preferences tab, you can specify a global font for all languages (font family, style and size) but
this can be overridden per style. To reset this overridden font so that the global font setting dominates
again, click Restore Style Defaults on the Styles tab.

Summary

This chapter has covered the details of using HTML assets and source code documents to control the
way HTML document files are created.

Next, we look at how Jutoh Plus can be used to create application help.

27

Chapter 5: Creating HTML Help

This chapter describes how to use Jutoh Plus to create HTML help. This is useful for application
developers and technical authors who want to create integrated application help from Jutoh projects, as
well as documentation in the other formats supported by Jutoh.

Introduction to HTML help

Jutoh Plus can create HTML Help files used by Windows and wxWidgets applications. Windows
HTML Help files have the extension CHM, and wxWidgets HTML Help files have the extension HTB.
HTB files contain simplified HTML with no CSS, but the two formats otherwise have similar project,
contents and keywords files. CHM files are mainly used on Windows, but there are CHM viewers for
other platforms. HTB files are, like wxWidgets, multiplatform.

In a wxWidgets application, you can use a help controller class to show help topics at appropriate
points, either using HTB/wxHTML Help for all platforms, or using CHM for Windows and wxHTML
Help for other platforms. The built-in wxHTML Help viewer can be used within an integrated window
in the application, or in a separate window. Jutoh uses both of these modes depending on whether a
modal dialog is active or not.

Since the wxWidgets HTML renderer is quite simplistic, you can only put very basic HTML into an
HTB file. You can’t use CSS, and paragraph spacing is not adjustable, but you can use image and
tables. The lack of CSS is mitigated by the fact that Jutoh will generate appropriate inline formatting
within the restrictions of HTB. A full list of supported tags can be found in the wxWidgets
documentation under the topic wxHTML Overview.

A more advanced version of wxHTML Help is currently being written that uses the wxWebView
control and can therefore handle full HTML and CSS. So in future you will be able to set the HTML
version option in your HTB configuration to 4 or 5 and Jutoh will generate modern HTML instead of
the simplified HTML that the current system requires.

A CHM help file uses Microsoft Internet Explorer (up to version 7) to render content on Windows, so
richer formatting is possible with CHM.

Anatomy of an HTML help file

An HTB file is simply a zip file containing the content, whereas a CHM file must be created by a help
compiler from an HHP project file and other files. The official compiler is included in Microsoft
HTML Help Workshop, which is a free download, and is called hhc.exe.

These are the constituents of an HTML help file:

• A set of HTML files;

• a project file with extension HHP with options and a list of HTML and other files;

• a contents file with extension HHC describing a hierarchy of topic titles, topic identifiers and
HTML files;

28

• an optional index file with extension HHK listing keywords with one or more links to HTML
files, adding an Index tab to the help viewer;

• an alias file consisting of lines of the form IDENTIFIER=FILE, relating topic identifiers to the
relevant HTML file;

• a map file consisting of lines of the form #define IDENTIFIER INTEGER which you can
include in your application source files so that you can refer to topics by symbol.

For HTB only, HHC files are generated with an extra parameter for each topic object with the integer
identifier, for example:

<param name="ID" value=101>

In CHM mode, this doesn’t compile so is not included.

Importing from an existing HHP project

You can create a new project based on an existing wxHTML Help or CHM project. A CHM project
will first need to be decompiled to a folder using a suitable application, which you can find on the web.
In the New Project Wizard, specify an HHP project file. Import will be performed after you finish the
wizard.

If there is an HHK file in the HTML help project, it will be imported and you can edit it in Project
Properties/HTML Help/Keywords.

Be aware that converting HTML to a Jutoh project is a somewhat imprecise process. It’s likely that
you’ll need to do some editing to correct import issues. But it’s still a lot faster than reworking your
project from scratch.

Creating an index (HHK) file

You have several choices when generating an HTB or CHM file and creating an HHK file:

 1. use the keywords as edited via Project Properties/HTML Help/Keywords;

 2. use document titles (one link per document, or if using an advanced table of contents, all the
found headings);

 3. use Jutoh index entries.

In fact you can use all three methods if you wish, or a combination, or none. You can choose which to
use via Project Properties/HTML Help/Options.

Specifying topic identifiers

If you specify a symbol in the “Id” property under Document Properties/Advanced Properties, this will
be added to the map and alias files, along with an automatically generated integer that the topic
identifier is associated with.

If you check the relevant option in Project Properties/HTML Help/Options, the map and alias files will
be copied to the Jutoh project folder with the suffixes _alias.h and _map.h. In fact the alias file is not
a valid C++ header file but you may wish to parse it to retrieve the association between topic identifiers

29

and HTML files; normally this is not necessary since you can use the preprocessor symbols in the
_map.h file instead and the help system will know what HTML file to load for a given topic identifier.

Here’s an example of loading and showing help. We assume that a section in the Jutoh project has its
“Id” defined as ID_HELP_OVERVIEW.

#include "myproject_ids.h"
...
m_helpController->Initialize(helpFile);
...
m_helpController->DisplaySection(ID_HELP_OVERVIEW);

In the example, ID_HELP_OVERVIEW is defined as an integer in myproject_ids.h, and the help
system looks up the topic integer in the HHC file to find the HTML file to show. Currently, you can’t
use identifiers within a document other than the top-level “Id” value since Jutoh doesn’t gather
identifiers from the content itself, only document properties.

Please refer to the wxWidgets documentation for further information on how to use the
wxHtmlHelpController and wxCHMHelpController classes.

File encodings

Generated HTB and CHM files use slightly different encoding schemes for their constituent parts.

The HHC and HHK file encoding is UTF-8 in HTB, and for CHM files is determined by the CHM
contents file encoding selection in Project Properties/HTML Help. In HTB, the HHC and HHK files do
not specify their encoding since it is specified in the HHP file using the Charset option and adding an
encoding specification to the individual files can confuse wxWidgets HTML Help.

HTML files are always in UTF-8 in both formats.

Encodings for imported HHP projects can be more varied and Jutoh performs various checks to
determine individual file encoding.

Summary

In this chapter we learned how Jutoh can be used for importing and generating application help.

Next, we look at a tool that can dramatically reduce the number of typos in your books: custom
checking.

30

Chapter 6: Using Custom Checking

This chapter describes how to use Jutoh Plus to create custom checking messages: a very productive
proofing tool.

Introduction to custom checking

When you compile a Jutoh project into an ebook file for a given configuration, Jutoh may show errors,
warnings and tips based on formatting and other issues in your book. These messages are based on
knowledge about formatting and ebooks encoded within Jutoh. But there may be potential issues
specific to an author, publishing company or a book series that would be convenient to warn about
during a compile. Here are some examples:

• highlighting any paragraphs formatted with the ‘Normal’ paragraph style rather than a more
specific style;

• highlighting any blank paragraphs;

• checking for words that are accidentally repeated, such as “his his”, “to to”, “at at”;

• checking for frequent typos or non-standard usage, such as “discrete” instead of “discreet”;

• checking for issues around quotations, such as a comma or period missing before an end quote;

• checking that the correct kind of dash is used;

• checking for clichés or over-used words that would not show up in a spell-check;

• checking for references to book distributors that are not supposed to be mentioned in the final
ebook.

Jutoh Plus has a mechanism that allows custom checks like this to be performed, with messages
included with other Jutoh messages during compilation, or listed in the Inspector when using the
Custom checking mode. You can set up find and replace preset libraries in either your project or
globally (for all projects). As you edit a project, you can add presets to your library that can be used to
identify common errors in the remainder of the project, and in other projects.

You may be surprised at how many issues you find in a project that were missed by human eyes!

The following screenshot shows custom messages for blank paragraphs, paragraphs with the ‘Normal’
style, and duplicate words.

31

Editing find and replace preset libraries

First decide whether your presets are relevant only to a specific project, or of more general use. You
might even have global presets that are applicable to all projects, and specific presets for each project.
You can also save and load presets, for example to transfer them between project and global storage
areas. Also, you can use the command File | Import | Import from Project command to import
presets from one project to another. Or, ensure there are presets in a template project that you are going
to use when creating new projects.

An advantage of keeping presets in a specific project is that if you send it to someone else, they too will
be able to see relevant custom messages.

You can edit project presets in the Project Properties dialog, under Find & Replace, and global presets
in the Preferences dialog, also under Find & Replace. You can also edit them from within the Find and
Replace dialog, by clicking on “...” and choosing Manage Presets.

To tell Jutoh whether and what preset library (or libraries) to use, you can edit your configuration(s), or
use a global advanced setting to override any configuration settings.

In your configuration, set the option Custom checking to use one or more of these libraries during
compilation. You can use wildcard characters * and ? to specify multiple libraries, and you can separate
specifications with the pipe (‘|’) character. Examples of suitable values include:

• * (use all libraries from this project and the global preset store)

• Project/* (use all libraries from this project)

• Global/* (use all libraries from the global preset store)

• Project/My Presets|Global/Default Presets (use My Presets from the current project, and Default
Presets from the global preset store)

You can override this configuration option globally via the setting Custom checking in
Preferences/Find & Replace. You can use this to switch off all custom messages, or always emit
custom messages regardless of configuration.

Jutoh will check all specified libraries and if the ‘find’ part of the preset matches within a paragraph,
the provided message will be emitted along with optional details that are provided in the preset. Any
‘replace’ component of the preset will be ignored; if the preset is used within the Find and Replace
dialog, then the ‘replace’ component can be used.

Defining a preset

32

When you define a preset, you specify all the search criteria that you would normally specify in the
Find and Replace dialog.

In addition, there are some optional fields to fill in.

Name lets you name a preset for the purposes of organisation, and the name will be mentioned the
compile message.

Details lets you define more explanation to be shown in the hint associated with the compile message
(shown when the user double-clicks on the message).

Level lets you set the severity of the message. Choose from Error, Warning, Tip and Notice. By
default, the preset will use Notice. Only preset messages will ever show as Notice, not regular Jutoh
messages.

Enabled lets you exclude this preset from compile messages by clearing the option.

Presets can’t perform all possible checking that you can think up, and each search specification works
within a single paragraph, but it can encompass a very useful range that can help you improve book
quality. If you use regular expressions, the custom messages can be quite sophisticated. For example,
the regular expression ^$ will match empty paragraphs, and this will find duplicate words except for
“had had”: (?!had)\y([\w]+)\y\s+\y\1\y. For more on regular expressions, see the topic Using
regular expressions in the Jutoh application help.

You can use simple searches, or regular expression searches, in conjunction with formatting searches.
For example, you might want to highlight any paragraphs that didn’t end with punctuation - except for
headings, which don’t usually end with punctuation. So, you could enter the regular expression \w$
(find a word character just before the end of the paragraph) and also specify in the advanced search
options that the paragraph style Body Text* must be found. This only applies the punctuation check
for body text styles such as Body Text and Body Text First Indent, and not for headings.

Viewing custom messages in the error window

When you compile your book, and if your configuration option Custom checking or global setting
Custom checking is set to use one or more preset libraries, then Jutoh will show any matching presets
as messages in the error window, reporting the error level defined in the preset (Error, Warning, Tip or
Notice).

As with other messages, you can double-click on a message and see more details. The location of the
matching text will be highlighted. You can quickly navigate through the messages using the keyboard
shortcuts Ctrl+[for the previous message, and Ctrl+] for the next message. These shortcuts are on the
menu View | More and can be modified if you want to use different keys.

Note: if you have edited text prior to this message, the highlighting may not be at the correct spot. This
is particularly problematic if you have added or deleted paragraphs, so if you find the highlighting to be
out of sync with the text, make a mental note of how far you have got through the errors, compile the
project again, and start looking from the appropriate point in the message list.

Viewing custom messages in the Inspector

You can also view your custom messages in the Inspector tab of the Formatting Palette: choose the
Custom checking mode from the drop-down control.

33

As above, Jutoh will use your configuration option Custom checking or global setting Custom checking
(set in Preferences/Find & Replace) to find presets to match against each paragraph in your book.

You can click Exception to add an exception so that the message won’t be shown again – the item will
immediately disappear from the list. Click Preset to edit the preset that generated the message. Or you
can correct the text, as shown in situ when you click on the message.

Whenever you edit text, the Inspector is updated after a few seconds. This means that unlike the
compile method, messages won’t be out of sync with the book for long.

If you click on the “...” menu button in the Inspector, you can use commands for editing presets and
configuring which preset libraries Jutoh will use.

Applying presets to your project

You can apply one or more preset libraries to your project to replace content and formatting en masse.
Use Format | Book | Apply Find and Replace Presets or the Apply Find and Replace Presets
command in the Inspector (with Custom checking selected).

This will show the Apply Presets dialog, giving you the choice of using current custom message
settings or selecting other preset libraries.

You can also tell Jutoh to apply presets directly after importing a file into a new project. To do this, set
the value of Apply presets to the required preset libraries in Preferences/Import.

Sample presets

When Jutoh is installed, a presets file called Standard Find and Replace Presets.jfpresets is
copied to the Jutoh Samples folder under your Documents folder. This file is loaded automatically
into global preset storage as the library “Standard Presets” if no other global presets currently exist.
You can also load this file manually via the preset manager, either into a project or into global storage.

This library includes some convenient presets for finding duplicate words, double spaces, and common
punctuation problems such as a comma at the end of a paragraph. It may also help you understand how
regular expressions work.

Defining exceptions

Depending on your presets, it may be that there are many ‘false positives’ - that is, the suggested
change isn’t relevant in all situations. This can create a lot of distracting noise in your compile
messages, making it harder to find the actual errors. So you can use exceptions to ignore particular
matches. Adding them in bulk can save a lot of time if you have a lot of spurious matches.

Each exception contains a preset name and the text fragment or whole paragraph to ignore when this
combination of preset and text is found. For example, you might want to ignore the text “that that”
when searching for double words; or only ignore it for one particular paragraph, since “that that” might
still be erroneous in other contexts.

You can only add exceptions when the preset finds some text, or by specifying the full paragraph as the
exception text and the text isn’t empty. So you can’t add exceptions for presets that match blank
paragraphs.

34

An exception is stored in a preset library, but it doesn’t have to be the same library that contains the
relevant preset. For project-specific exceptions, it’s best to store them with the project, so you can
create a new preset library for that purpose, via Project Properties/Find & Replace. When you add a
new exception by clicking on the details for a custom message, and your project has no preset libraries,
Jutoh will ask if you want to create one called “Exceptions”. This library will then be the default for
further exceptions you add for this project, in this Jutoh session.

You need to ensure that the configuration option Custom checking or global setting Custom checking
mentions the exception library you’re using. For example, to use all libraries in the project and global
storage, set it to * (an asterisk, meaning ‘match all libraries’). To use a global preset library and a
project exceptions library, use something like Global/My Presets|Project/My Exceptions.

There are three ways to add exceptions:

 1. Edit a preset library in Project Properties/Find & Replace or Preferences/Find & Replace,
and edit exceptions under the Exceptions tab.

 2. In the details for a custom message, scroll down to the line Add exception and click on the link
to add a single exception to a library of your choice.

 3. In the details for a custom message, scroll down to the line Add bulk exceptions and click on it.
This will show the Bulk Exception dialog and lets you choose which matches will be used for
exceptions and which library to add the exceptions to.

If you have just added exceptions, and you chose to add the exceptions to a library in your project
rather than in global storage, you can reverse it using File | Undo Project Properties.

If you have added exceptions via the error message details window (2 or 3 above), and Jutoh detects
that your current Custom checking setting doesn’t include the library containing exceptions, and
therefore the exceptions won’t be used, it will ask if you want to add the library name to the setting.

Step-by-step guide

To help bring all this together, let’s look at the typical steps you will take to make custom checking
work for you.

 1. Define some find and replace presets. Add a global preset library via Preferences/Find &
Replace, or project-specific presets via Project Properties/Find & Replace. Or you can do
both! You can load existing preset libraries from disk or create them from scratch.

 2. Tell Jutoh which preset libraries you want to use. You can do this per configuration, via the
option Custom checking. When this configuration is selected, for this project, and you click
Compile, Jutoh will use the specified preset libraries. You could even add a special
configuration that is used only for this purpose. Or, you can tell Jutoh to always use certain
preset libaries, for all projects and configurations, via the global setting Custom checking.
Example values: “*” (use all libraries), “Global/Standard Presets” (use only the global library
Standard Presets), “Global/*|Project/Exceptions” (use all global libraries, and the project library
Exceptions). Tip: a quick way of editing these options is to use the context menu in the error
list, by right-clicking (or control-clicking on Mac) and choosing commands under Custom
Messages.

 3. Compile your project and view the messages. Click Compile, and double-click on a message.

35

You can use Ctrl+[and Ctrl+] to quickly cycle through the messages, showing the matching
content in situ; correct your text if necessary. Or, view messages in the Inspector using ‘Custom
checking’ mode.

 4. Add exceptions to eliminate ‘false positives’. Each custom message has links to add exceptions
singly or in bulk, so that Jutoh won’t warn about this particular occurrence again. If you create
an Exceptions preset library in each project, you can store the exceptions with your projects,
reducing distracting messages when you come to compile the project again.

 5. Go to step 3 until you are satisfied that there are no more problems. As you edit your book, you
may add further presets as you discover common errors.

Summary

In this chapter we learned how Jutoh can be used to create special messages to track down problems in
your book, such as common typos or punctuation errors.

Next up: the bulk creation of books personalised for individual customers.

36

Chapter 7: Creating Personalised Books

This chapter describes how to use Jutoh Plus to create customised books in bulk, with just a text file
containing customisation data, and a project file containing variables. No scripting is needed!

What is personalisation and why would I need it?

Suppose you want to send out 100 advance copies of your book to garner some reviews. But you don’t
want these people to redistribute your book. It would deter redistribution if each book contained the
reader’s name – “For Sally Smith” – perhaps in the title page, or even before each chapter heading in
small capitals.

Or perhaps you want to create books for children that use the child’s name at various points in the
book.

Or, you might want to create enhanced versions of your book for subscribers, with extra material and
each subscriber’s name in the book.

To achieve this, you could type the custom information into each copy of the book, compile the book,
and rename it. But this is a very time-consuming and error-prone process. What if you could simply
type the list of names into a text file, and then get Jutoh to create all these books automatically? This
‘mail merge’ type of operation would be a pretty big time saving, and maybe even make a task
practical that would be completely impractical otherwise.

In the next two sections, we describe string tables – an important part of the personalisation process –
and the steps needed to create your personalised books.

What is a string table?

A string table is simply a general-purpose repository of variable/value pairs, such as
CUSTOMER=Billy or ADDRESS=1, Canary Wharf. There are global string tables that are not project-
specific – these can be edited via the Preferences dialog in the Strings page. Also, each project can
have string tables, and these can be edited via the Project Properties dialog in the Strings page.

Jutoh lets you use variables in your project, so for example if you wanted to use a different ISBN
number per configuration, you could have a different string table per configuration, and set the ISBN
variable to a different value in each string table.

We use string tables for personalisation: the fields (variables) in the first line of our data text file are
loaded into a string table, and Jutoh creates a book using these values. Jutoh reads another line, loads
that into the string table, and creates a book using these values, and so on until it reaches the end of the
file.

How does Jutoh know which variables names to use for the fields in the file? You tell it – by specifying
something like this in the Batch Compile dialog:

CUSTOMER,ADDRESS

37

This tells Jutoh to put the first field of each line into the variable CUSTOMER, and the second field
into the variable ADDRESS.

Personalisation steps

Here are the steps to take for creating personalised books.

Step 1. Decide what variables you are going to allow in your books, such as %CUSTOMER% and
%ADDRESS%. Insert these into your book, for example in the title page.

Step 2. Decide whether you are going to use a global or project string table to receive the variable
values, and what its name will be. It’s not really important which you use, but if in doubt, use a global
string table. Edit the configuration option Project string table or Global string table to specify the
name of your string table. Also enable Replace strings in content. If you are going to use multiple
configurations, make sure you edit these in all relevant configurations. You can omit this step and the
Batch Compile dialog will do it for you.

Step 3. Also in your configuration, edit the Book file name option and insert a keyword to make the file
unique to your customer. For example: %FILENAME%_%CUSTOMER%. You can omit this step
and enter it in the Batch Compile dialog instead. You will be prompted if the Book file name
configuration option does not contain variables from the Variables field to make the file name unique.

Step 4. Prepare a text file with one line per record, separated by a character that you choose, typically a
semicolon. A typical line might be: Joe Bloggs;1 High Street, Wilton.

Step 5. Invoke the Book | Batch Compile command, and check Create personalised books. Specify
the data file name, the comma-separated variable names, for example CUSTOMER,ADDRESS, an
output ebook format such as %FILENAME%_%CUSTOMER%, and the string table to use (i.e. the
one used in your configuration).

38

The Batch Compile dialog

Step 6. Enable the configurations you want to use by checking them in the Batch Compile dialog.

Step 7. Click Compile in the Batch Compile dialog. Jutoh will read each record (line) of the file, fill
the string table with the fields in the record, and use these strings when compiling the book. The
number of books created should be the number of records in your data file multiplied by the number of
configurations you specified.

If you have a variable called CONFIG, this will be used to select a single configuration that will be
used instead of the selected configurations.

After you close the Batch Compile dialog, you can undo any changes that Jutoh has made to
configurations by using the command File | Undo Edit Configuration (for each changed
configuration).

39

Using a special configuration for personalised books

It’s possible that you don’t always want to create personalised books; so you can create a new
configuration, say “Personalised Epub” that you will select for personalised books. In addition, create
conditional formatting around the personalised text, so that it will be omitted in all configurations
except “Personalised Epub”. Here are the necessary steps.

 1. Go to Project Properties/Configurations, click “+”, type the new configuration name, and choose
Base on existing configuration. Choose an existing configuration, and click OK.

 2. In your new configuration, find the option Include content matching tags, and type the tag name
“personalisation” (it’s an arbitrary name that you will use later).

 3. In your other configurations, find the option Exclude content matching tags, and type the tag
name “personalisation”. Click OK.

 4. Select the personalised content in your book, e.g. “For %CUSTOMER%”, and in the Objects
tab of the Formatting Palette, double-click condition. Type “personalisation” into the tag field
and click OK. You will see a pair of objects bracketing the text.

Now, when you batch-compile with the “Personalised Epub” configuration, the personalised text will
be visible. Other configurations will omit the text. If you have already batch-compiled with other
configurations, you may need to reset the Book file name option back to %FILENAME% if it still
contains keywords.

If you are personalising a children’s book, you could have a different string table that you use for non-
personalised versions, with default names. So for all of the configurations except “Personalised Epub”,
you can set Project string table to the name of default string table that you created in your project, for
example “Default String Table”. This will set sensible values for variables that would otherwise be read
from your data file.

For more on conditional formatting, please type “conditional content” into the Jutoh toolbar or refer to
Creating Great Ebooks Using Jutoh.

Summary

In this final chapter we learned how to perform bulk creation of personalised books, useful for creating
advance copies or other purposes.

We hope you enjoy a big productivity increase from using Jutoh Plus! Let us know what you think via
the Jutoh support page, and feel free to suggest new features.

40

Appendix A: A Sample Script

Here’s a sample of a Jutoh script that creates a new Jutoh project from an ODT file, sets properties,
adds different covers for Epub and Mobipocket, inserts an ODT fragment, and compiles Epub and
Mobipocket ebook files. You can find a more complete example with the relevant script and input files
on the Jutoh web site.

;;; encoding=utf-8
[Lena]
actions=import,setproperties,compile,check
configs=Epub:epub,Mobipocket:mobi
source=Lena.odt
title=Lena
project=subdir/%TITLE%_%AUTHOR%
author=Felix Carswell
author_ordered=Carswell, Felix
copyright=(c) Felix Carswell
date=2011
description=A girl meets a boy in a café.
cover:Epub=Lena.jpg
cover:Mobipocket=Trees.dtempl
ISBN:Mobipocket=1111111111111
ISBN:Epub=2222222222222

deleteexistingproject=yes
abortonerror=no

; pattern, style, pagebreak
splitmethod=pagebreak
splitpattern=Chapter*
splitstyle=Heading 1

; simple, fromheadings, none
toc=fromheadings
tocmaxlevel=3
removefromtoc=License Notes|Some other heading|And another

; yes to parse CSS, no to use simple styles
import.parsecss=no
import.firstparagraphstyle=Body Text
import.subsequentparagraphstyle=Body Text First Indent

; simple, none
titlepage=none

; Stylesheet to import on new project creation. Can be importstylesheet or
mergestylesheet
mergestylesheet=MyStyles.stylesheet

insertfile=file:"TextChunk.odt";new-section:"My Text Chunk";after-section:"Lena"
insertfile=file:"TextChunk.odt";in-section:"Lena";at-end:"yes"

41

insertfile=file:"TextChunk.odt";in-section:"Lena";at-start:"yes"
insertfile=file:"TextChunk.odt";in-section:"*";keyword:"%MYTEXT%"
insertfile=file:"TextChunk.odt";in-section:"*";before-text:"In my"
insertfile=file:"butterfly.png";in-section:"Chapter 2";keyword:"%BUTTERFLY
%";name:"butterfly";id:"image1"

objects.butterfly.url=value:"http://www.jutoh.com"
objects.image1.maxwidth=100%

configs.*.Maximum image width=999
configs.Epub.HTML left margin=10
strings.*.TESTSTRING=Hello, this is a test string!

; document property can be tags, guide, filename, showintoc, showinnavmap,
showinspine, notes
; This makes Chapter 1 the start section
documents.Chapter 1.guide=start

; The next three lines exclude Chapter 4 and Chapter 5 from the Mobipocket ebook
documents.Chapter 4.tags=notsample
documents.Chapter 5.tags=notsample
configs.Mobipocket.Exclude sections matching tags=notsample

; Experimental
; match-text can take wildcards, with * and ? escaped by double-backslash if
necessary.
; match-text can't be used to replace text, only styles.
search=match-text:"** * **";replace-paragraph-style:"Centre"
search=find-text:"In my job";replace-text:"In my incredibly interesting job"
;search=find-paragraph-style:"Normal";replace-paragraph-style:"Body Text"
search=find-paragraph-style:"Heading 2";replace-paragraph-style:"Heading 2 With
Page Break"

42

Change Log

Version 1.13, September 30th 2020

• Updated the logo for Jutoh 3.

• Updated terminology for custom checking (from ‘custom compile messages’).

Version 1.12, March 17th 2019

• Documented the new book personalisation feature in Chapter 1.

• Added chapters for custom compile messages and book personalisation.

Version 1.11, October 10th 2018

• Mentioned new parameter clear:yes in insertfile.

• Added document properties epub-type, page-style-enabled, page-style-name, page-style-start-
number, page-style-repeat.

• Documented page layout properties.

Version 1.10, January 22nd 2018

• Mentioned custom compile messages in Chapter 1.

Version 1.9, December 8th 2017

• Added bibliography.autobuild, index.autobuild and fields.autobuild settings.

Version 1.8, March 30th 2014

• Added Chapter 5: Creating HTML Help.

Version 1.7, March 4th 2014

• Doumented escape characters.

• Corrected setproperties documentation.

• Added insertresource documentation and added the document properties name, css, css-
filename, javascript-filename, javascript-at-bottom, uses-svg, uses-mathml, uses-remote-
resources.

Version 1.6, July 24th 2013

• Added HTML and text to the list of files that can be inserted.

• Documented the further image and media object parameters.

• Expanded ‘reimport’ documentation and added a section on using custom script tools.

• Added documentation for ‘compact’.

43

• Documented the new insertfile parameters style, guide-type and encoding.

Version 1.5, May 15th 2013

• Added EAN variable to metadata in addition to ISBN, to set the identifier attribute correctly.

• Replacement strings can be $EMPTY$ to indicate the empty string should be used.

• Search can specify in-section and a value with wildcards matching section titles, to limit search
to one or more sections.

Version 1.4, November 27th 2012

• Added ‘Using HTML Templates’ and explained about HTML templates in the Introduction.

• Documented new class parameter when inserting an image file.

Version 1.3, October 3rd 2012

• Added ‘Using HTML Templates’ and explained about HTML templates in the Introduction.

• Removed references to adding unique numbers in script names since this is no longer necessary.

Version 1.2, August 18th 2012

• Added image and DOCX support for insertfile.

• Added parent-section and name parameters for insertfile.

• Added image property assignment using the syntax:
objects.objectname.paramname=value:paramvalue.

Version 1.1, July 18th 2012

• Added template and template specifiers.

Version 1.0, April 6th 2012

• First edition.

44

	Preface
	About this book
	About the author
	How this book is structured
	Conventions and terms used in this book

	Chapter 1: Introduction to Jutoh Plus
	Scripting in Jutoh
	Editing scripts
	Running scripts using custom tools
	What can scripting be used for?
	HTML templates
	Creating CHM and HTB HTML help files
	Custom checking
	Creating personalising books
	Summary

	Chapter 2: Script Syntax
	General script syntax
	Actions
	Configurations
	Important variables
	Metadata
	Cover image
	Splitting the file
	Import variables
	Table of contents
	Footnotes
	Index, bibliography, and fields
	Page layout
	Setting properties
	Searching and replacing
	Inserting files
	Inserting resource documents
	Deleting sections
	Style sheets
	Templates
	Summary

	Chapter 3: Using the Command Line
	Command line syntax
	Using a virtual display
	Using the command line on Mac OS X
	Using the command line on Windows
	Summary

	Chapter 4: Using HTML Templates
	Introduction to templates and assets
	Combining document and project assets
	Viewing and editing the substituted HTML
	Using tags and configuration names
	Using source code documents
	Editing code editor preferences
	Summary

	Chapter 5: Creating HTML Help
	Introduction to HTML help
	Anatomy of an HTML help file
	Importing from an existing HHP project
	Creating an index (HHK) file
	Specifying topic identifiers
	File encodings
	Summary

	Chapter 6: Using Custom Checking
	Introduction to custom checking
	Editing find and replace preset libraries
	Defining a preset
	Viewing custom messages in the error window
	Viewing custom messages in the Inspector
	Applying presets to your project
	Sample presets
	Defining exceptions
	Step-by-step guide
	Summary

	Chapter 7: Creating Personalised Books
	What is personalisation and why would I need it?
	What is a string table?
	Personalisation steps
	Using a special configuration for personalised books
	Summary

	Appendix A: A Sample Script
	Change Log

